Share
Related Topics
Tagged As
An R-value indicates an insulation's resistance to heat flow. The higher the R-value, the greater the insulating effectiveness.
We do not strictly control Google ad content. If you believe any Google ad is inappropriate, please email us directly here.
The effectiveness of an insulation's resistance to heat flow also depends on how and where the insulation is installed. For example, insulation that is compressed will not provide its full rated R-value. The overall R-value of a wall or ceiling will be somewhat different from the R-value of the insulation itself because some heat flows around the insulation through the studs and joists. Therefore, it's important to properly install your insulation to achieve the maximum R-value.
The amount of insulation or R-value you'll need depends on your climate, type of heating and cooling system and the section of the house you plan to insulate.
Determining Proper R-Value – per Oak Ridge National Laboratory & DOE
http://www.ornl.gov/sci/roofs+walls/insulation/ins_16.htm
The R-Value of Wood
In a log home, the wood helps provide some insulation. Wood's thermal resistance or resistance to heat flow is measured by its R-value. The higher the R-value, the more thermal resistance.
The R-value for wood ranges between 1.41 per inch (2.54 cm) for most softwoods and 0.71 for most hardwoods. Ignoring the benefits of the thermal mass, a 6-inch (15.24 cm) thick log wall would have a clear-wall (a wall without windows or doors) R-value of just over 8.
Compared to a conventional wood stud wall [3½ inches (8.89 cm) insulation, sheathing, wallboard, a total of about R-14] the log wall is apparently a far inferior insulation system. Based only on this, log walls do not satisfy most building code energy standards. However, to what extent a log building interacts with its surroundings depends greatly on the climate. Because of the log's heat storage capability, its large mass may cause the walls to behave considerably better in some climates than in others.
Logs act like "thermal batteries" and can, under the right circumstances, store heat during the day and gradually release it at night. This generally increases the apparent R-value of a log by 0.1 per inch of thickness in mild, sunny climates that have a substantial temperature swing from day to night. Such climates generally exist in the Earth's temperate zones between the 15th and 40th parallels.
HHI Error Correction Policy
HHI is committed to accuracy of content and correcting information that is incomplete or inaccurate. With our broad scope of coverage of healthful indoor environments, and desire to rapidly publish info to benefit the community, mistakes are inevitable. HHI has established an error correction policy to welcome corrections or enhancements to our information. Please help us improve the quality of our content by contacting allen@healthyhouseinstitute.com with corrections or suggestions for improvement. Each contact will receive a respectful reply.
The Healthy House Institute (HHI), a for-profit educational LLC, provides the information on HealthyHouseInstitute.com as a free service to the public. The intent is to disseminate accurate, verified and science-based information on creating healthy home environments.
While an effort is made to ensure the quality of the content and credibility of sources listed on this site, HHI provides no warranty - expressed or implied - and assumes no legal liability for the accuracy, completeness, or usefulness of any information, product or process disclosed on or in conjunction with the site. The views and opinions of the authors or originators expressed herein do not necessarily state or reflect those of HHI: its principals, executives, Board members, advisors or affiliates.